A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus.
نویسندگان
چکیده
The molecular basis of the antagonism between cellular proliferation and differentiation is poorly understood. We have investigated the role of the cyclin-dependent kinase inhibitor p27(Xic1) in the co-ordination of cell cycle exit and differentiation during early myogenesis in vivo using Xenopus embryos. In this report, we demonstrate that p27(Xic1) is highly expressed in the developing myotome, that ablation of p27(Xic1) protein prevents muscle differentiation and that p27(Xic1) synergizes with the transcription factor MyoD to promote muscle differentiation. Furthermore, the ability of p27(Xic1) to promote myogenesis resides in an N-terminal domain and is separable from its cell cycle regulation function. This data demonstrates that a single cyclin-dependent kinase inhibitor, p27(Xic1), controls in vivo muscle differentiation in Xenopus and that regulation of this process by p27(Xic1) requires activities beyond cell cycle inhibition.
منابع مشابه
Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1
AIMS Cyclin-dependent kinase inhibitors (CDKIs) play a critical role in negatively regulating the proliferation of cardiomyocytes, although their role in cardiac differentiation remains largely undetermined. We have shown that the most prominent CDKI in Xenopus, p27(Xic1)(Xic1), plays a role in neuronal and myotome differentiation beyond its ability to arrest the cell cycle. Thus, we investigat...
متن کاملThe cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus.
We have investigated the role of the cyclin-dependent kinase inhibitor, p27(Xic1), in the coordination of cell cycle exit and differentiation during early neurogenesis. We demonstrate that p27(Xic1) is highly expressed in cells destined to become primary neurones and is essential for an early stage of neurogenesis. Ablation of p27(Xic1) protein prevents differentiation of primary neurones, whil...
متن کاملp27Xic1, a Cdk Inhibitor, Promotes the Determination of Glial Cells in Xenopus Retina
p27Xic1, a member of the Cip/Kip family of Cdk inhibitors, besides its known function of inhibiting cell division, induces Müller glia from retinoblasts. This novel gliogenic function of p27Xic1 is mediated by part of the N-terminal domain near but distinct from the region that inhibits cyclin-dependent kinases. Cotransfections with dominant-negative and constitutively active Delta and Notch co...
متن کاملaPKC Phosphorylates p27Xic1, Providing a Mechanistic Link between Apicobasal Polarity and Cell-Cycle Control
During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis...
متن کاملDepletion of the cell-cycle inhibitor p27Xic1 impairs neuronal differentiation and increases the number of ElrC+ progenitor cells in Xenopus tropicalis
The Xenopus p27(Xic1) gene encodes a cyclin dependent kinase (CDK) inhibitor of the Cip/Kip family. We have previously shown that p27(Xic1) is expressed in the cells of the neural plate as they become post-mitotic (Development 127 (2000) 1303). To investigate whether p27(Xic1) is necessary for cell cycle exit and/or neuronal differentiation, we used antisense morpholino oligos (MO) to knockdown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 130 1 شماره
صفحات -
تاریخ انتشار 2003